
Effect of pattern on the resolution of the visual-tactile sensor*

Qingling Duan1, Qi Zhang2, Zhiyuan Liu3 and Yongsheng Ou4

Abstract— Thanks to high spatial resolution and multi-
tactile mode perception, visual-tactile sensing technology has
been widely used in various robot operations such as active
perception, pose estimation and in-palm operation. However,
the pattern as an essential part of the optic tactile sensor
has rarely been studied. Therefore, this paper investigated the
effect of the different patterns on the resolution of the visual-
tactile sensors. The silicone sensors with different densities and
sizes and cameras integrate different tactile sensors, collect the
sensor stress data in different situations, and process the data
with deep learning models. The performance of the prediction
forces of different patterns was evaluated by the root mean
square error (RMSE). The results show that the proposed four
patterns can decouple the normal and shear forces, and the
force resolution of the semi-sparse pattern is better than the
other pattern designs. Furthermore, the grad-cam method is
used to obtain the focus of the deep learning model decoupling
forces, showing that the semi-sparse pattern tends to cover the
whole image because it has better performance.

I. INTRODUCTION

Thanks to the rapid development of computer vision,
robots’ visual perception and understanding ability of un-
structured and natural scenes has rapidly improved [1]. How-
ever, when a robot has visual perception impairment, such
as insufficient light supply and occlusion, in complex tactile
contact task scenarios such as robot dexterous operation,
good tactile feedback (such as contact force) can provide
rich proprioception resulting in more reliable operation and
control strategies. Therefore, designing soft force sensors like
human skin is critical to the robot field, which can promote
robot development.

The traditional soft tactile sensor generally detects the
force signal through the change of capacitor [2,3], resistance
[4,5] and other electrical signals caused by deformation
under the action of external force. In the process of detection
of the electrical signal, the plane shear force (Fx, Fy)
and the normal force (Fz) in the vertical direction will
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simultaneously cause the deformation of the sensor, making
the resulting signals interfere with each other and cannot
decouple the three-dimensional force [6]. However, with
the development of vision algorithms, visual-tactile sensors
have emerged, which have gradually become the hot spot
direction of tactile sensors due to the advantages of high
spatial resolution, low cost and rich tactile information.

The design of vision-tactile sensors comprises the colloidal
contact layer, light source structure and camera imaging
system. In MIT Gelsight’s visual-tactile sensor [7], they
introduced labeled points on the reflective film inside the
soft elastomer to capture the displacement of labelled points
under 3D forces and established the mapping relationship
between the labelled point displacement and 3D forces
through finite element analysis to realize 3D force detection
in the soft environment. The TacTip series optic tactile sensor
[8] was proposed by the University of Bristol Nathan et
al. The TacTip sensor mimics the human fingertip touch-
body receptor structure by embedding an array-distributed
pin in the colloidal layer, thereby conducting the deformation
information on the sensor surface using the camera system
to observe the movement of the pin array. In addition, Sui et
al. of Tsinghua University have developed the Tac3D tactile
sensor [9], which contains an optical path system refracted
by four light mirrors and can achieve a virtual binocular
imaging effect through a monocular camera. Cui et al. of
the Institute of Automation of the Chinese Academy of
Sciences proposed the GelStereo visual-tactile sensing series
[10] based on binocular vision, which can obtain binocular
tactile images simultaneously and then recover the contact
depth information through the stereo matching algorithm.

This paper designs a new sensor consisting of an elas-
tomer, a camera placed at the bottom of the sensor and light
sources. The elastomer contains a black, light-opaque layer
at the top which is used to prevent interference from external
light, a patterned layer in the middle, and a transparent
layer at the bottom. When the sensor’s surface is under
stress, the elastomer will deform, causing the colour and
intensity of the light emitted by the light source to change
through the elastomer emission, and the image captured by
the camera will change. This paper uses the patterned layer
of different densities and sizes, and other factors remain
consistent. Using the Alexnet network [11], the datasets
collected from different pattern designs were processed, and
RMSE evaluated the prediction performance of the forces
to evaluate the effect of the patterns on the resolution of
the sensor. The results show that the force resolution of the
semi-sparse pattern is better than the other pattern designs.



II. DESIGN OF TACTILE IMAGE SENSOR

A. Fabrication Method

The flexible probe of the sensor is mainly made of
silicone and dye, shaped by mold. For selecting materials,
the flexible probe is the central part of the three-dimensional
force sensor, which must withstand thousands of extrusions
during data acquisition and therefore has high requirements
for material softness, durability and tear resistance. At the
same time, in order to be able to collect a clearer 3D map
image, the material also needs to have better transparency.
The Sorta-clearTM 12 silicone gel from Smooth-on has
excellent softness(Shore hardness 12A), stretchability (max-
imum elongation 590%), and tear-resistance(11558 N/m),
high transparency, and matching pigments that can be used
to prepare pattern layers. In this paper, Sorta-clearTM 12
silicone was mixed with different pigments to make the base
and pattern layers, fixed the pattern layer through the Sil-
PoxyTM silicone glue of Smooth-on, and then filled the
pure Sorta-clearTM 12 silicone as the transparent layer. The
specific study method is shown in Fig. 1 and is described as
follows:

1) Mix Sorta-clearTM12 silicone according to mass ratio
A: B=1:1, add black pigment of 5% of total silicone
quality and rotate it into the deflating machine for 4
minutes. The black liquid silicone is poured into mould
one and heated 60°C for 15 minutes to obtain the base
layer;

2) In the same ratio as the step(1), pour the mould 2 to
prepare the pattern layer silicone, get small yellow, red,
blue, purple and pink silicone of 4 mm×4mm, and fix
them in the base layer by Sil-PoxyTM silicone;

3) Fix the moulds 3 and 4 around the pattern layer, pour
1:1 Sorta-clearTM12 silicone, heat and cure to form
a transparent layer. After the preparation of the soft
probe is completed, mould four is removed, and the
mold 3 can serve as the shell of the soft probe and is
fixed on the automatic acquisition platform with screws
through the reserved hole position.

B. Pattern Principle

The main idea of decoupling the 3D force is to record the
deformation of the sensor through the camera. For this type
of visual-tactile sensor, the pattern is integral to its expressed
information. In order to observe the impact of patterns on
neural network output, this paper designed four probes with
different degrees of complexity, depending on two factors:
the density and size of silicone blocks. All but the different
patterns are made from the same material. Among these,
patterns Fig. 2(a), Fig. 2(b) and Fig. 2(c) differ in density,
with Fig. 2(a) being the densest, Fig. 2(c) being the most
sparse, and B being somewhere between them. Fig. 2(a)
and Fig. 2(d) are used to contrast the effects of squares of
different sizes. The sparseness and miniaturization of patterns
can help reduce the complexity of device production and
accelerate the mass production of sensors.

III. EXPERIMENTAL PLATFORM

A. System Integration

As is shown in Fig. 3, in addition to the prepared elas-
tomer, the experimental system includes the light source,
camera, force sensor, and mechanical arm.

• Light source. It is recommended to use 3w led lamp
beads(Bridgelux, USA, cob lamp bead) as the light
source and avoid using colored light or other special
light. Secure the LED lamp to the heat sink to avoid
overheating.

• Camera. The camera used is a CCD industrial camera
with a resolution of 819×819, and the camera is placed
at the bottom of the sensor to capture the deformation
pattern. Communicate with the computer via USB.

• Force sensor. A commercially available torque sen-
sor(ROBOTIC, FT 300-S Force Torque Sensor) is fixed
to the end of the robotic arm, which is used to record
the force applied by the robotic arm.

• Mechanical arm. The main body of the collection
platform is an industrial robot(UNIVERSAL ROBOTS,
UR5e Robot), which is used as force application equip-
ment, and its end is equipped with a torque sensor. In
addition, a 20mm diameter pressure head is installed
at the end of the torque sensor, which acts on the soft
probe surface.

B. Experimental Operation

The data acquisition program was written in Labview,
which was realized to control the robot manipulator to move
to the specified position, automatically obtain the camera
image, and synchronously record the 3-dimensional force
information. Communication with the mechanical arm uses
the TCP/IP protocol. A position servo of 125hz was used
to control the arm-end-indenter applied to the soft probe at
the same speed. The fabricated sensor is fixed to the optical
platform. Before each experiment, the robotic arm’s end was
moved to the top of the sensor, serving as the start point.
The data acquisition process is to reach a given eight depths
at a speed of 2mm/s, form different normal forces, under
each depth to 1000 different positions, forming a different
shear force, back to the starting point after each shear force
is applied. Finally, 24000 (1000 × 8 ×3) group sampled data
was obtained. The resulting dataset is divided into training
sets (70%) and validation sets (30%) for the training and
validating parts of the deep learning model.

TABLE I
AN EXAMPLE OF A TABLE

Pattern A Pattern B Pattern C Pattern D
Fx/N 0.41 0.26 0.35 0.37
Fy /N 0.45 0.27 0.41 0.43
Fx/N 0.66 0.45 0.7 0.66
Note: The error is calculated RMSE error



Fig. 1. The Soft Probe Preparation Process

Fig. 2. Tactile Image Sensor Pattern Designs

IV. SENSOR CHARACTERIZATION

A. Effect of Pattern on the Resolution of Sensor

The structure of the optic-tactile sensor, such as the type
of flexible material, pattern, production process, Etc., largely
determines its performance. Therefore, this paper mainly
discusses the influence of patterns on the resolution of tactile
sensors, keeping the experimental platform, the number of
datasets and the deep learning model consistent except for
the probe pattern changes.

Here, this paper analyze the error (RMSE) of the de-
coupled three-dimensional forces (Fx, Fy , Fz) under four

Fig. 3. Data Acquisition Platform

different patterns. The errors in the test set under different
patterns are shown in Table 1. Among them, the network
trained on the data collected by the semi-sparse pattern
performs best on the validation set, where the RMSE of Fx

error is 0.26N, the RMSE of Fy is 0.27N, the RMSE of Fz is
0.45N. Other motifs have a Fx error between 0.38N ± 0.03N,
a Fy error between 0.43N ± 0.02N, a Fz error between and
0.68N ± 0.02N. It is shown that the proper sparsity helps to
improve the accuracy. However, extreme sparsity decreases
the accuracy. Reducing the size of the color block has less
effect on the accuracy. To better understand the reasons



Fig. 4. The CAM Visualized using the Grad-CAM Method

for this result, to visualize the CAM using the Grad-CAM
method [12], which is used to locate the sensitive regions
of the neural network model. In the visualization example
of Fig. 4, stronger CAM regions used brighter colours. This
paper compared the performance of the four patterns on (Fx

= 20N, Fy = 30N, Fz = 60N) and (Fx = -20N, Fy = -10N,
Fz = 30N). Due to the influence of the light source, it tends
to cover the edge part (sunny position), which is obvious in
the small pattern. Because the semi-sparse pattern performs
better, it tends to cover the entire image. This ability to
accurately locate the stress region in the CAM map species
has a potential value for the image decoupling force.

B. Sensor Evaluation

Furthermore, the semi-sparse pattern was selected as the
standard performance of sensors. To improve the prediction
accuracy of the semi-sparse pattern, which was preprocessed
before putting images expressed from the semi-sparse pattern
into the network training. There are differential and noise
reduction treatments. The specific preprocessing methods are
described as follows.

• Difference Process: Each set of deformation patterns has
three images, the first is under no stress, the second is
only under positive pressure, and the third is under a
further shear force based on the second. As a result, the
sensor causes thermal drift with a longer use time. To
avoid this thermal drift, we get some differential graphs.
The first graph of each group is taken minus the second
graph, and the first graph is also taken minus the third
graph, which is called the positive order difference. The

opposite is the reverse order difference.
• Denoising Process: Denoising uses a thresholding op-

eration. After trial and error, the threshold value of 30
both preserves most of the border information well and
filters out a small part of the non-border noise. The
threshold value is then set to 30, the pixel RGB value
where the RGB value is added to less than 30 and the
RGB value is set to 0.

• Original image: Not doing any processing is called the
original image input.

As shown in Fig. 5, according to the above-preprocessing
methods, five different preprocessing combinations were
obtained: positive order difference without denoising (named
A), reverse order difference without denoising (named B),
positive order difference denoising (named C), and reverse
order difference denoising (named D) and original image
(named E).

After the above five preprocessing of the deformed images
collected by the semi-sparse pattern, they were put into
the Alexnet network and evaluated with the validation set
at each iteration. The graph represents the validation of
Fx, Fy , Fz during the training process. The evaluation
method used is RMSE, which for a good training network
is as low as it should be possible. As seen from the Fig.
6, for the evaluation of Fx during the training process,
B=D>A=C>E, for the evaluation of Fy during the training
process, B=D>A=C>E, for the evaluation of Fz during the
training process, B=D>E>A=C, it can be concluded that
the preprocessing of the reverse order difference performs
the best effect in evaluating the model for 3D force training,



Fig. 5. Five Different Preprocessing Combinations

(a) Fx result (b) Fy result (c) Fz result

Fig. 6. The evaluation of the five different preprocessing collected by the semi-sparse pattern: grey line: preprocessing A, blue line: preprocessing B, red
line: preprocessing C, green line: preprocessing D, orange line: preprocessing E

Fig. 7. The comparison of the semi-sparse and dense patterns in evaluating the five different preprocessing. The lines for dense pattern: orange line:
preprocessing A, red line: preprocessing B, light blue line: preprocessing C, pick line: preprocessing D, blue line: preprocessing E

regardless of whether it is denoising or not. Otherwise, the
positive difference performs very well on Fx and Fy , but not
as well on Fz . Similarly, the dense pattern collected data for
the above five preprocessing, pretreatment after the images
into the same network training, get the training process of
each cycle validation curve, as shown in the Fig. 7, under
each preprocessing, semi-sparse pattern in Fx, Fy , Fz error
are better than dense pattern, which also verifies the above
conclusion: semi-sparse pattern contrast dense pattern has
better resolution performance.

Therefore, in this paper, the best model of the semi-sparse
difference non-denoising group is saved into the final trained
network, and 2243 random data are collected to test the
performance of the sensor network. The linear relationship
between the predictive and actual values is studied. As shown
in Fig. 8, black indicates the actual values, and red indicates
the predicted values. It can see that the actual 3D force
to predict the 3D force has a perfect linear relationship,
indicating that the sensor in this paper has a superior force
measurement capability. It further shows that the semi-



(a) Fx result (b) Fy result

(c) Fz result

Fig. 8. The comparison of the force measured by the designed sensor and
the ground truth in x, y and z direction. The red lines represent the ideal
result, and the black dots represent measured result.

sparse pattern can reach the resolution level of deep learning
training.

The method mentioned enables accurate measurement of
3D forces, which outperforms conventional methods. Con-
ventional resistive, capacitive tactile sensors can achieve one-
dimensional force (pull force or pressure) measurement, but
this method is challenging to achieve in three-dimensional
force detection. Because in the detection process, the planar
shear force (Fx, Fy) and the vertical normal force (Fz) will
cause the deformation of the sensor simultaneously, making
the generated signals interfere with each other [6]. Through
the method of structural innovation, there are still the prob-
lems of complex decoupling process, easy interference and
low decoupling accuracy. It can be said that the tactile
sensor of vision is superior to the tactile sensor based on the
electrical and magnetic signal principle [13]. The latter is
vulnerable to electromagnetic signal interference and cannot
accurately measure the force.

In terms of structural design, the design mentioned is
streamlined. Silicone and camera, and light source are easy
to integrate. At the same time, many other tactile sensors
are very bulky and difficult to use. For example, in the
optical fibre imaging proposed by [14], the optical fiber array
consists of 121 single-core optical fibers. They are evenly
interwoven and fixed to a metal plate measuring 40 cm in
diameter at one end. The light source is connected to the
other end of the input fiber, and the rear-end receiving camera
is connected to the other end of the output fiber. However,
their optical fiber is very bulky and not practical enough
compared to designs in this paper, directly reflected in the
silicone pattern design.

V. CONCLUSIONS

The force resolution of 4 different pattern designs was
compared using deep learning methods. The camera and light
source imaging were used in the integrated system, keeping
others consistent except for pattern design differences. By

comparing the accuracy of deep learning decoupling forces,
it can find that the force resolution of semi-sparse patterns
is better than other pattern designs. Furthermore, using the
grad-cam method, the focus of deep learning models on
different pattern designs was obtained and found that the
focus on semi-sparse pattern design tends to cover the whole
image. Therefore, the design of semi-sparse patterns is more
conducive to deep learning model learning. Subsequently,
the semi-sparse pattern was selected as the study object,
and its performance was analyzed. Furthermore, it found a
good linear relationship between the predicted and actual
values on the force measurement, indicating that the semi-
sparse pattern met the resolution requirements of the deep
learning training force. At the same time, the sensors are very
conducive to integration. In the future, hoping to achieve the
update and iterative development of soft 3D force sensors,
hoping to be used in force control applications in flexible
robot control.
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