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Abstract. Human skin can accurately sense subtle changes of both nor-
mal and shear forces. However, tactile sensors applied to robots are chal-
lenging in decoupling 3D forces due to the inability to develop adaptive
models for complex soft materials. Therefore, a new soft tactile sensor
has been designed in this paper to detect shear and normal forces, in-
cluding a soft probe and image acquisition device. First, to capture the
deformation of the sensor, colored silicone squares were embedded in the
soft probe. Capcamera movement of the colored squares under external
forces. The image dataset collected at different 3D forces is then input
into a deep learning model. Finally, a custom miniature image device
is acquired and embedded in the soft probe to miniaturize the sensor.
Computing results obtained from experimental datasets show that the
proposed method can accurately decouple the 3D forces. Robots can grap
vulnerable objects with sensors prepared at the robot’s tip. The tactile
sensors studied in this paper are expected to be applied in robotics fields
such as adaptive grasping, dexterous manipulation and human-computer
interaction.
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1 Introduction

Human skin contains four mechanoreceptors (SA-I, SA-II, RA-I, RA-II), allow-
ing humans to perceive subtle changes in force during contact with objects accu-
rately [1,2]. Moreover, force perception is a natural appeal to barriers to visual
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perception [3]. However, when a robot has visual perception impairment, such as
insufficient light supply and occlusion, in complex tactile contact task scenarios
such as robot dexterous operation, good tactile feedback (such as contact force)
can provide rich proprioception, resulting in more reliable operation and control
strategies [4]. Therefore, designing soft force sensors like human skin is critical
to the robot field, which can promote robot development.

The traditional soft mechanical sensor generally detects the force signal
through the change of capacitor [5,6], resistance [7,8] and other electrical signals
caused by the deformation under the action of external force. However, with the
development of vision algorithms, visual and tactile sensors have emerged, which
model the contact colloidal deformation information captured by the camera as
tactile information such as force signals through visual algorithms. With the ad-
vantages of high spatial resolution, low cost and rich tactile information, it has
gradually become the hot spot direction of tactile sensors [9].

The design of vision-tactile sensors comprises the colloidal contact layer, light
source structure and camera imaging system. In MIT Gelsight’s visual-tactile
sensor [10], they introduced labeled points on the reflective film inside the soft
elastomer to capture the displacement of labelled points under 3 D forces and
established the mapping relationship between the labelled point displacement
and 3 D forces through finite element analysis to realize 3 D force detection in
the soft environment. The TacTip series optic tactile sensor [11] was proposed
by the University of Bristol Nathan et al. The TacTip sensor mimics the hu-
man fingertip touch-body receptor structure by embedding an array-distributed
pin in the colloidal layer, thereby conducting the deformation information on
the sensor surface using the camera system to observe the movement of the pin
array. Meta’s Digit sensor, the [12], optimizes the structure of the sensor to in-
tegrate it into the fingertips for robotic operations. In addition, Sui et al. of
Tsinghua University have developed the Tac3D tactile sensor [13], which con-
tains an optical path system refracted by four light mirrors and can achieve a
virtual binocular imaging effect with a monocular camera. Cui et al. of the Insti-
tute of Automation, Chinese Academy of Sciences, have proposed the GelStereo
visual and tactile sensing series [14] based on binocular vision, which can ob-
tain binocular tactile images simultaneously and then recover the contact depth
information through the stereo matching algorithm.

A soft 3 D force sensor is presented in this paper that can accurately decouple
the 3 D force. It is achieved by soft silicone, camera, light source, etc., as shown
in Fig.1 (a). The 3 D force information was converted into the image information
of the silicon surface, as shown in Fig.1 (c), and a deep learning method was used
to decouple the 3 D forces. The proposed force sensor has a small shape, high
decoupling accuracy and high flexibility, which is suitable for various operations
of robot fingertips.
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Fig. 1. The principle design of 3d force sensor, data acquisition platform, and the image
data collected.

2 Sensing Principle and Sensor Algorithm

2.1 Deformation Mode of the Soft Probe

The main idea of decoupling the 3D force is to record the deformation of the
sensor through the camera and calculate the 3D force applied to the sensor
through the deformation image taken. As shown in Fig.1(a), place the camera at
the bottom of the sensor to capture the silicone deformation. Sorta-clearTM12
silicone gel was used to prepare the sensor. As shown in Fig.2, to obtain quantifi-
able features, the top of the transparent silicone is covered with a pattern layer
made of the arrangement and combination of a plurality of small colored silicone
squares of the same softness. The top of the pattern layer is covered with a black
silicone layer called the bottom layer. The soft probe consists of a transparent
layer, a pattern layer, and a base layer. A transparent bottom plate is placed at
the bottom of the soft probe, serving as a support plate for the soft probe so
that the soft probe can move relative to the bottom. Light from the LED light
source is reflected into the camera through the soft probe. When the soft probe
is stationary, i. e., when no force is applied, the light captured by the camera
comes from the pattern layer of the soft probe. The following is the analysis
and quantification of mechanical deformation and resulting pattern changes in
the presence of shear and normal forces. Suppose the silicone is a cuboid with a
height of H and a bottom length of L.

Shear Deformation When the upper surface of the soft probe moves in parallel
relative to the bottom, the resulting angular shape variable is proportional to the
shear force applied to the surface, F = Gθ, where G stands for shear coefficient,
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Fig. 2. 3D Force Applied to the Soft Probe Cause the Normal Deformation and Shear
Deformation of the Surface

and angular variable θ can be calculated by measuring shear deformation α:

θ = tan−1α/H. (1)

Small color squares in the pattern layer will move to different degrees according
to the direction and size of the shear force.

Normal Deformation When the cylindrical soft probe stretches along its hor-
izontal axis, according to the poisson effect, the thickness change of the cross-
section ∆d is :

∆d = dv∆L/L, (2)

where d is the original thickness, v is the poisson ratio, L is the length before
stretching, and ∆L is the change of length. As a result, the periphery of the
pattern layer extends outward.

2.2 Deep Learning Model Adopted to Decouple the 3D Forces

The pixel values of the corresponding image taken by the camera will also change
due to the deformation of the color image layer. It is not easy to map the
force deformation to the inductive surface. Encouraged by the success of deep
learning in tactile perception, this paper presents a convolutional neural network
model. Specifically, a multi-output CNNmodel is used to extract features of high-
resolution deformation images and, eventually, get three-dimensional forces. The
accuracy of the prediction depends on the sensor material and preparation.
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Fig. 3. The Decoupling 3D Force Network Structure

The decoupling 3D force network structure is shown in Fig. 3, divided into
feature extraction and regression. The feature extraction block is composed of 4
convolutional layers and pooling layers. The convolution kernel size is 5×5 for the
first and second layers and 3×3 for the last two layers, the number of channels
is 32,64,128,128, respectively, and the step size is 2. Max pooling size is 2×2,
and the step size is 2. Finally, the features obtained by the feature extraction are
connected and passed to the regression layer. The regression layer consists of two
fully connected layers, and the number of channels is 1000,100. The final output
is a three-dimensional force. The means square error (MSE) was used as a loss
function to carry out backpropagation during training. The neural network was
optimized using a stochastic gradient descent optimizer(SGD), with a batch size
of 64 and a learning rate of 10−5. The GPU server Tesla p40 was trained for
120,000 iterations.

3 Experiment and Results

3.1 Automatic Data Acquisition Platform

As shown in Fig.1(b), the main body of the collection platform uses an industrial
robot(UNIVERSAL ROBOTS, UR5e Robot), which is used as a force applica-
tion device and is equipped with a force/torque sensor(ROBOTIC, FT 300-S
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Force Torque Sensor) to record force data in real-time. A 20mm diameter inden-
ter is mounted at the end of the force/torque sensor used to act on the surface
of the soft probe. Communication with the mechanical arm uses the TCP/IP
protocol. A position servo of 125hz was used to control the arm-end-indenter
applied to the soft probe at the same speed.

The fabricated sensor is fixed to the optical platform. Before each experi-
ment, the robotic arm’s end was moved to the top of the sensor, serving as the
start point. The data acquisition process is to reach a given eight depths at a
speed of 2mm/s, form different normal forces, under each depth to 1000 different
positions, forming a different shear force, back to the starting point after each
shear force is applied. Finally, 24000 (1000 × 8 ×3) group sampled data was
obtained.

The data acquisition program was written in Labview, which was realized to
control the robot manipulator to move to the specified position, automatically
obtain the camera image, and synchronously record the 3-dimensional force in-
formation. Soft probes vary over time, bringing subtle differences to the image.
In order to eliminate the bias, after applying shear force, the robot manipulator
will return to the start point to collect the no-force data, each experiment of the
normal force (shear force) image minus the original image (no force) to obtain
the difference map. The differential-treated dataset is divided into the train set
(70%) and the test set (30%) for the deep learning model.

Table 1. Sensor Performance

Size 22mm×22mm ×22mm

Shore Hardness 12A(soft)

Measuring Range
Fx ±40N
Fy ±40N
Fz 0− 70N

3D Force Measurement
Error(RMSE)

Fx 0.34N
Fy 0.43N
Fz 0.68N

Bandwidth around 30Hz

3.2 Sensor Performance

The final response of the manufactured sensor is obtained from the color image,
which depends on multiple factors. The size of the sensor depends mainly on the
camera, and using a more miniature camera will reduce the size of the sensor.
Collect the data into a deep learning model for training and got the root-mean-
square error (RMSE) of the test set for Fx, Fy and Fz were 0.34N, 0.43N, and
0.68N. Running under a computer with a graphics processing unit (NVIDIA
GeForce GTX 3080 Ti). the sensor bandwidth is around 30hz. The measuring
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Table 2. Comparison of state-of-the-art three-dimensional force sensor and force de-
coupling methods.

Gelsight[10] Digit[12] Kakani V[18] Tac3D[13] GelStereo[14] Ours

Decoupling force
method

Array marker
points, finite
element modeling

Not reported Binocular vision,
deep learning
(vgg-16)

Finite ele-
ment model-
ing

Finite ele-
ment analysis

Deep learning

Normal force
(shear force)
measurement

Yes Not reported Yes Yes Yes Yes

Size Bulky 20mm*27mm*18mm Bulky Bulky Bulky 22mm*22mm*22mm

Sensor Construc-
tion/Features

Bulky, poor model
adaptability

Compact, cheap, un-
developed force mea-
surement function

Bulky Bulky, poor
model adapt-
ability

Poor model
adaptability

Soft, Strong, Com-
pact,minimum size

(a) Fx result (b) Fy result

(c) Fz result

Fig. 4. The comparison of the force measured by the designed sensor and the ground
truth in x, y and z direction. The red lines represent the ideal result, and the black
dots represent measured result.

range of the sensor is shown in Table. 1. Fig. 4 shows that the force measured
by the designed sensor is close to the ground truth after the calibration.

Conventional capacitive [5,6] and resistive [7,8] tactile sensors can achieve
one-dimensional force (pull force or pressure) measurement, but this method is
challenging to achieve in three-dimensional force detection. Because in the de-
tection process, the plane direction of the shear force (Fx, Fy) and the vertical
direction of the normal force (Fz) will cause the deformation of the sensor simul-
taneously, making the generated signals interfere [15]. Through the method of
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Fig. 5. Color Image under Normal Signal Direction Shear Force

structural innovation [16,17], there are still the problems of complex decoupling
process, easy interference and low decoupling accuracy.

Visual-tactile sensors such as gelsight [10]. They introduced the marker point
on the reflective film inside the soft elastomer to capture the marker point dis-
placement under the 3 D force. They established the mapping relationship be-
tween the marker point displacement and the 3 D force through the finite element
analysis to realize the 3 D force detection in the soft environment. Also, using
finite element modeling are the Tac3D [13] and GelStereo [14]. However, the es-
tablished three-dimensional force model is relatively small due to the need to set
more preconditions and simplify the problem in finite element modelling. Meta’s
Digit sensor [12] optimizes the structure of the sensor to integrate it into the fin-
gertips for robotic operations, but force measurements are not reported. Kakani
et al. [18] improved the VGG-16 deep neural network to measure the contact
position, the contact area, and the contact force distribution of the binocular
tactile images. Still, the sensor structure is bulky and difficult to use. As shown
in Table. 2, the designed sensors are based on optical principles, which not only
can accurately measure the 3 D force compared to the existing optical tactile
sensors but also are the smallest size of the current optical tactile sensors and
are very soft.

Using the sensors studied in this paper, the grasping of fragile objects can
be achieved. As shown in the Fig.5, attaching the sensor to the clip claw at
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the end of the robotic arm can receive and control the magnitude of the force
while grasping the fragile object so that the fragile object will neither fall nor be
crushed. Thus, the force control problem in the process of grasping the fragile
object is solved.

4 Conclusion

To detect 3 D forces under soft conditions, this paper designs a structurally
innovative sensor, ranging from data acquisition to data analysis and processing
to hardware implementation. This study can be used for force control in robot
compliant control, which is expected to solve the problems in the robot field
and promote the intellectual development of robots. In the future, it is hoped to
realize the update and iterative development of soft 3D force sensors and hope
to realize mechanical arm force control equipment to solve different mechanical
arm control problems.
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