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Abstract— Good tactile feedback (such as contact force) can
provide rich proprioception in complex tactile contact task
scenarios such as robot dexterous operation. However, tactile
sensors applied in robotics lack accurate 3D force decoupling.
Here, we present a soft tactile sensor with self-decoupling by
designing colored silicone blocks, whose deformation can be
detected by a camera according to the change of the image
of the colored silicone block under external forces. Further-
more, by designing different flexible probe pattern layers, the
connection between the flexible probe pattern and the deep
learning image recognition mechanism is studied to guide the
design of the flexible sensor probe. As a result, the sensor can
accurately measure the normal and shear forces through deep
learning. Furthermore, by mounting our sensor at the fingertip
of a robotic gripper, the robot can perform challenging tasks,
such as grasping vulnerable objects and measuring force-change
curves during the water-adding process. This research provides
new insight into tactile sensor design and could be beneficial
to various applications in the robotics field.

Index Terms— Deep learning in robotics and automation,
force and tactile sensing, force-decoupling mechanism of the
images

I. INTRODUCTION
With the rapid development of computer vision, robots’

visual perception and understanding of unstructured and nat-
ural scenes have rapidly improved [1]. However, in contact-
rich task scenarios such as complex and dexterous robot op-
eration, tactile perception often obtains more direct, accurate
and rich proprioception than vision, thus generating a more
reliable operation and control strategy [2, 3]. However, over
the years, despite significant progress in robot operations [4],
achieving good tactile feedback (e. g., contact force) and
dexterous daily operations (e. g., adaptive grasping) remains
a significant challenge. One of the main reasons is that robots
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lack soft tactile sensing systems that accurately perceive
subtle changes in forces. Recently, rigid tactile sensors, such
as force-sensitive resistance, lack soft, deformable surfaces
that facilitate physical environment interactions. Therefore,
designing the soft force sensor is critical for the robot field,
which can solve the current difficulties facing robots and
promote the development of robots.

Traditional tactile sensors rely mainly on electrical [5, 6
,7, 8] or magnetic [9, 10, 11] modes. However, they are
prone to interference and failure in electromagnetic fields,
limiting their application scenarios [12, 13]. Optical-based
tactile sensors [14, 15, 16] effectively avoid this problem and
provide greater precision, sensitivity, and reproducibility [17,
18]. Among these sensors, the vision-based tactile image sen-
sors [19, 20] can express complex tactile information directly
on the images captured by the camera. Meanwhile, deep
learning has powerful image processing capabilities [21, 22],
which is an effective method for extracting complex tactile
data from images [23]. However, optical-based tactile sensors
are usually bulky [14] and unsuitable for daily grasping
and operation tasks [24]. Moreover, deep learning algorithms
are generally not highly interpretable, significantly reducing
the reliability of deep learning-based schemes, which is not
conducive to developing deep learning in applications.

To address the mentioned challenges, this paper designs
a soft tactile sensor with force sensing capability and three-
dimensional force self-decoupling capability, which can be
adapted for daily robot grasping and operation tasks. The
sensor consists of coloured silicone, a camera, and light
sources. When the sensor’s surface is forced, the silicone
will deform, causing the colour and intensity of the light
emitted by the light source to be reflected by the silicon, and
the pattern captured by the camera will change. Furthermore,
this paper designs different flexible probe pattern layers to
study the image recognition mechanism (interpretability) of
deep learning in the process of 3D force decoupling to guide
the design of the flexible sensor probe. By climbing tactile
sensors at its fingertips, the robot can use tactile feedback for
challenging tasks, such as stably grasping vulnerable objects
and measuring force change curves during the water process.

II. RELATED WORK

The traditional soft force sensors generally detect one-
dimensional force (tension or pressure) through the changes
in capacitance [5, 6] and resistance [7, 8] caused by the
material deformation of external force. However, this method
is challenging to detect three-dimensional force. Because in
the 3D force detection process, the shear force(Fx, Fy) in



Fig. 1. Tactile Image Sensor Pattern Designs

the plane direction and the normal force(Fz) in the vertical
direction will simultaneously cause the deformation of the
sensor, making the resulting signals interfere with each other
[25]. Therefore, researchers have tried to decouple three-
dimensional forces under soft conditions through mathemat-
ical modelling [26, 27], structural innovation [28, 29], and
other methods. For example, in [30], Songyue Chen et al.
reported a flexible three-dimensional force sensor based on
the hemisphere interlocked structure, which measures the
normal force or shear force separately through the contact
resistance changes of the three interlocked hemisphere units,
and still faces the problems of complex decoupling process,
easy decoupling interference and low decoupling accuracy.

With the development of image processing technology,
it has become a new idea to transform multidimensional
force into an image signal and decouple multidimensional
force through image processing. This idea was implemented
in the visual-tactile sensor Gelsight, proposed by MIT’s E.
H. Adelson team in 2014 [31]. They introduced marker
points on the reflective film inside the soft elastomer to
capture the displacement of marker points under the 3D
force. Furthermore, they established the mapping relationship
between the marker point displacement and 3D force through
finite element analysis to realize 3D force detection in a soft
environment. However, the established three-dimensional
force model has a small application range due to the need
to set many preconditions and simplify the problem.

Deep learning has become a mainstream method for han-
dling familiar objects in many necessary fields, such as text
[32], image [21], video [33], and graphics [34]. Therefore,
combining deep learning with multidimensional force decou-
pling becomes a new option. For example, Baimukashev et
al. [35] proposed a tactile image sensor combining an optical
fibre and a camera that successfully decoupled the three-
dimensional forces with a multi-output CNN model. Kakani

et al. [36] improved on the VGG-16 deep neural network to
realize the measurement of the contact location, the contact
region, and the contact force distribution of the binocular
tactile images. Yuan et al. [37] performed measurements
of 3D forces and normal moments by directly inputting
GelSight tactile images into neural networks.

However, the mechanism of deep learning is imperfect,
resulting in deep learning still being in the ”black box” state.
For example, in [38], D. Heaven points out that without
understanding the deep learning recognition mechanism,
the small changes in the images may seriously impact the
results, which significantly reduces the reliability of deep
learning-based solutions and is not conducive to developing
deep learning in engineering applications. At the same time,
because the identification mechanism of deep learning was
not understood in general, deep learning is only an auxiliary
tool for data processing in most applications, so it cannot
provide practical guidance for designing sensors.

Therefore, studying the image recognition mechanism is
crucial for applying deep learning in 3D force decoupling,
which is related to the application’s stability and the sensor’s
reliability, but also a guide for the sensor probe design
and algorithm improvement. Therefore, this paper studies
the connection between flexible probe patterns and deep
learning mechanisms by designing different flexible probe
pattern layers, as shown in Fig. 1. Furthermore, this paper
studies the deep learning mechanism through deep learning
interpretability technology [39] to guide the front-end sensor
design. The contribution of this study is summarized as fol-
lows: 1)Proposed a sensor preparation process and proposed
the 3D deep learning-based force decoupling method under
soft conditions. 2)Studied the image recognition mechanism
of different soft probe patterns in deep learning of 3D force
decoupling and explored the sensor design through deep
learning mechanism. 3)Realized the soft 3D force sensor
preparation to reach the engineering application level. The
sensor can be fixed to the fingertips of the robot gripper to
grab fragile objects.

III. DESIGN OF TACTILE IMAGE SENSOR

A. Fabrication Method

The flexible probe of the sensor is mainly made of
silicone and dye, shaped by mold. For selecting materials,
the flexible probe is the central part of the three-dimensional
force sensor, which must withstand thousands of extrusions
during data acquisition and therefore has high requirements
for material softness, durability and tear resistance. At the
same time, in order to be able to collect a clearer 3D map
image, the material also needs to have better transparency.
The Sorta-clearTM 12 silicone gel from Smooth-on has
excellent softness(Shore hardness 12A), stretchability (max-
imum elongation 590%), and tear-resistance(11558 N/m),
high transparency, and matching pigments that can be used
to prepare pattern layers. In this paper, Sorta-clearTM 12
silicone was mixed with different pigments to make the base
and pattern layers, fixed the pattern layer through the Sil-
PoxyTM silicone glue of Smooth-on, and then filled the



Fig. 2. The Soft Probe Preparation Process

Fig. 3. Data Acquisition Platform

pure Sorta-clearTM 12 silicone as the transparent layer. The
specific study method is shown in Fig. 2 and is described as
follows:

1) Mix Sorta-clearTM12 silicone according to mass ratio
A: B=1:1, add black pigment of 5% of total silicone
quality and rotate it into the deflating machine for 4
minutes. The black liquid silicone is poured into mould
one and heated 60°C for 15 minutes to obtain the base
layer;

2) In the same ratio as the step(1), pour the mould 2 to

prepare the pattern layer silicone, get small yellow, red,
blue, purple and pink silicone of 4 mm×4mm, and fix
them in the base layer by Sil-PoxyTM silicone;

3) Fix the moulds 3 and 4 around the pattern layer, pour
1:1 Sorta-clearTM12 silicone, heat and cure to form
a transparent layer. After the preparation of the soft
probe is completed, mould four is removed, and the
mold 3 can serve as the shell of the soft probe and is
fixed on the automatic acquisition platform with screws
through the reserved hole position.

B. Pattern Principle

The main idea of decoupling the 3D force is to record the
deformation of the sensor through the camera. For this type
of visual-tactile sensor, the pattern is integral to its expressed
information. In order to observe the impact of patterns on
neural network output, this paper designed four probes with
different degrees of complexity, depending on two factors:
the density and size of silicone blocks. All but the different
patterns are made from the same material. Among these,
patterns Fig. 1(a), Fig. 1(b) and Fig. 1(c) differ in density,
with Fig. 1(a) being the densest, Fig. 1(c) being the most
sparse, and B being somewhere between them. Fig. 1(a)
and Fig. 1(d) are used to contrast the effects of squares of
different sizes. The sparseness and miniaturization of patterns
can help reduce the complexity of device production and
accelerate the mass production of sensors.

IV. EXPERIMENTAL PLATFORM

A. System Integration

As is shown in Fig. 3, in addition to the prepared elas-
tomer, the experimental system includes the light source,
camera, force sensor, and mechanical arm.

• Light source. It is recommended to use 3w led lamp
beads(Bridgelux, USA, cob lamp bead) as the light



Fig. 4. The CAM Visualized using the Grad-CAM Method

source and avoid using colored light or other special
light. Secure the LED lamp to the heat sink to avoid
overheating.

• Camera. The camera used is a CCD industrial camera
with a resolution of 819×819, and the camera is placed
at the bottom of the sensor to capture the deformation
pattern. Communicate with the computer via USB.

• Force sensor. A commercially available torque sen-
sor(ROBOTIC, FT 300-S Force Torque Sensor) is fixed
to the end of the robotic arm, which is used to record
the force applied by the robotic arm.

• Mechanical arm. The main body of the collection
platform is an industrial robot(UNIVERSAL ROBOTS,
UR5e Robot), which is used as force application equip-
ment, and its end is equipped with a torque sensor. In
addition, a 20mm diameter pressure head is installed
at the end of the torque sensor, which acts on the soft
probe surface.

B. Experimental Operation

The data acquisition program was written in Labview,
which was realized to control the robot manipulator to move
to the specified position, automatically obtain the camera
image, and synchronously record the 3-dimensional force
information. Communication with the mechanical arm uses
the TCP/IP protocol. A position servo of 125hz was used
to control the arm-end-indenter applied to the soft probe at
the same speed. The fabricated sensor is fixed to the optical
platform. Before each experiment, the robotic arm’s end was
moved to the top of the sensor, serving as the start point.

The data acquisition process is to reach a given eight depths
at a speed of 2mm/s, form different normal forces, under
each depth to 1000 different positions, forming a different
shear force, back to the starting point after each shear force
is applied. Finally, 24000 (1000 × 8 ×3) group sampled data
was obtained. The resulting dataset is divided into training
sets (70%) and validation sets (30%) for the training and
validating parts of the deep learning model.

TABLE I
AN EXAMPLE OF A TABLE

Pattern A Pattern B Pattern C Pattern D
Fx/N 0.41 0.26 0.35 0.37
Fy /N 0.45 0.27 0.41 0.43
Fx/N 0.66 0.45 0.7 0.66
Note: The error is calculated RMSE error

V. SENSOR CHARACTERIZATION

A. The Connection between Soft Probe Pattern and Deep
Learning Mechanism

The structure of the optic-tactile sensor, such as the type
of flexible material, pattern, production process, Etc., largely
determines its performance. Therefore, this paper mainly
discusses the influence of patterns on the resolution of tactile
sensors, keeping the experimental platform, the number of
datasets and the deep learning model consistent except for
the probe pattern changes.

Here, this paper analyze the error (RMSE) of the de-
coupled three-dimensional forces (Fx, Fy , Fz) under four



Fig. 5. Five Different Preprocessing Combinations

(a) Fx result (b) Fy result (c) Fz result

Fig. 6. The evaluation of the five different preprocessing collected by the semi-sparse pattern: grey line: preprocessing A, blue line: preprocessing B, red
line: preprocessing C, green line: preprocessing D, orange line: preprocessing E

different patterns. The errors in the test set under different
patterns are shown in Table 1. Among them, the network
trained on the data collected by the semi-sparse pattern
performs best on the validation set, where the RMSE of Fx

error is 0.26N, the RMSE of Fy is 0.27N, the RMSE of Fz is
0.45N. Other motifs have a Fx error between 0.38N ± 0.03N,
a Fy error between 0.43N ± 0.02N, a Fz error between and
0.68N ± 0.02N. It is shown that the proper sparsity helps to
improve the accuracy. However, extreme sparsity decreases
the accuracy. Reducing the size of the color block has less
effect on the accuracy.

To better understand the reasons for this result, to visualize
the CAM using the Grad-CAM method [40], which is used
to locate the sensitive regions of the neural network model.
In the visualization example of Fig. 4, stronger CAM regions
used brighter colours. This paper compared the performance
of the four patterns on (Fx = 20N, Fy = 30N, Fz = 60N) and
(Fx = -20N, Fy = -10N, Fz = 30N). Due to the influence
of the light source, it tends to cover the edge part (sunny
position), which is obvious in the small pattern. Because
the semi-sparse pattern performs better, it tends to cover
the entire image. This ability to accurately locate the stress
region in the CAM map species has a potential value for the
image decoupling force.

B. Effect of Different Preprocessing Methods on Image
Recognition

The semi-sparse pattern was selected as the standard
performance of sensors. To improve the prediction accuracy
of the semi-sparse pattern, which was preprocessed before
putting images expressed from the semi-sparse pattern into

the network training. There are differential and noise re-
duction treatments. The specific preprocessing methods are
described as follows.

• Difference Process: Each set of deformation patterns has
three images, the first is under no stress, the second is
only under positive pressure, and the third is under a
further shear force based on the second. As a result, the
sensor causes thermal drift with a longer use time. To
avoid this thermal drift, we get some differential graphs.
The first graph of each group is taken minus the second
graph, and the first graph is also taken minus the third
graph, which is called the positive order difference. The
opposite is the reverse order difference.

• Denoising Process: Denoising uses a thresholding op-
eration. After trial and error, the threshold value of 30
both preserves most of the border information well and
filters out a small part of the non-border noise. The
threshold value is then set to 30, the pixel RGB value
where the RGB value is added to less than 30 and the
RGB value is set to 0.

• Original image: Not doing any processing is called the
original image input.

As shown in Fig. 5, according to the above-preprocessing
methods, five different preprocessing combinations were
obtained: positive order difference without denoising (named
A), reverse order difference without denoising (named B),
positive order difference denoising (named C), and reverse
order difference denoising (named D) and original image
(named E).

After the above five preprocessing of the deformed images



Fig. 7. The comparison of the semi-sparse and dense patterns in evaluating the five different preprocessing. The lines for dense pattern: orange line:
preprocessing A, red line: preprocessing B, light blue line: preprocessing C, pick line: preprocessing D, blue line: preprocessing E

(a) Fx result (b) Fy result

(c) Fz result

Fig. 8. The comparison of the force measured by the designed sensor and
the ground truth in x, y and z direction. The red lines represent the ideal
result, and the black dots represent measured result.

collected by the semi-sparse pattern, they were put into
the Alexnet network [41] and evaluated with the validation
set at each iteration. The graph represents the validation
of Fx, Fy , Fz during the training process. The evaluation
method used is RMSE, which for a good training network
is as low as it should be possible. As seen from the Fig.
6, for the evaluation of Fx during the training process,
B=D>A=C>E, for the evaluation of Fy during the training
process, B=D>A=C>E, for the evaluation of Fz during the
training process, B=D>E>A=C, it can be concluded that
the preprocessing of the reverse order difference performs
the best effect in evaluating the model for 3D force training,
regardless of whether it is denoising or not. Otherwise, the
positive difference performs very well on Fx and Fy , but not
as well on Fz . Similarly, the dense pattern collected data for
the above five preprocessing, pretreatment after the images

into the same network training, get the training process of
each cycle validation curve, as shown in the Fig. 7, under
each preprocessing, semi-sparse pattern in Fx, Fy , Fz error
are better than dense pattern, which also verifies the above
conclusion: semi-sparse pattern contrast dense pattern has
better resolution performance.

C. Sensor Evaluation

The best model of the semi-sparse difference non-
denoising group is saved into the final trained network,
and 2243 random data are collected to test the performance
of the sensor network. The linear relationship between the
predictive and actual values is studied. As shown in Fig.
8, black indicates the actual values, and red indicates the
predicted values. It can see that the actual 3D force to predict
the 3D force has a perfect linear relationship, indicating that
the sensor in this paper has a superior force measurement
capability. It further shows that the semi-sparse pattern can
reach the resolution level of deep learning training.

The method mentioned enables accurate measurement
of 3D forces, which outperforms conventional methods.
Conventional resistive [7], capacitive [5] tactile sensors
can achieve one-dimensional force (pull force or pressure)
measurement, but this method is challenging to achieve in
three-dimensional force detection. Because in the detection
process, the planar shear force (Fx, Fy) and the vertical
normal force (Fz) will cause the deformation of the sensor
simultaneously, making the generated signals interfere with
each other [25]. Through the method of structural innovation
[28], there are still the problems of complex decoupling
process, easy interference and low decoupling accuracy. It
can be said that the tactile sensor of vision is superior to
the tactile sensor based on the electrical and magnetic signal
principle. The latter is vulnerable to electromagnetic signal
interference and cannot accurately measure the force.



Fig. 9. Sensor Integration Scheme

(a) Manufactured sensor

(b) Chip-grasping Task

(c) Egg-grasping Task

Fig. 10. (a)The proposed sensor is easy to fabricate and the size of a bottle
lid, enabling a wide range of applications. (b)(c)Robot gripper using tactile
feedback from the proposed sensor to hold a chip/egg without squishing it.

D. Sensor Application

In terms of structural design, the design mentioned is
streamlined. Silicone and camera, and light source are easy
to integrate. At the same time, many other tactile sensors
are very bulky and difficult to use. For example, in the
optical fibre imaging proposed by [35], the optical fiber array
consists of 121 single-core optical fibers. They are evenly
interwoven and fixed to a metal plate measuring 40 cm in
diameter at one end. The light source is connected to the
other end of the input fiber, and the rear-end receiving camera
is connected to the other end of the output fiber. However,

their optical fiber is very bulky and not practical enough
compared to designs in this paper, directly reflected in the
silicone pattern design.

Therefore, by making customized miniature image acqui-
sition equipment, component integration, reducing the size
of structural parts and other means, the sensor size was
controlled within 1cm3 (22cm ×22cm × 22cm), as shown
in Fig. 9. At present, the detection frequency has reached
30Hz. Next, this paper conducts experiments to demonstrate
the effectiveness of the proposed sensor in some application
scenarios.

Force sensitivity: Water in a plastic bottle To visually
illustrate the force sensitivity of our sensor, we do a pouring
demo. By mounting the tactile sensor on a robotic gripper,
which holds a plastic bottle, add water to the bottle several
times without slipping off. During the process of pouring
water, it can be seen that both the positive pressure and the
friction force measurements of the sensor will increase, indi-
cating the sensor’s ability to distinguish forces as small as the
weight of less than 20 mL (<0.2N) of water. (Supplementary
Video S1)

Grasping fragile objects: Next, we show that the pro-
posed sensor can be a sound tactile sensor for robotics
applications such as grasping delicate objects such as chips
and eggs, as shown in Fig. 10. Grasping squishy objects
requires force feedback – too much force will squish the eggs
and chips. This paper demonstrates that the built-in force
induction (minimum of 30N) is insufficient for the task and
that the proposed sensor does an excellent job of using force
feedback to control grasping.

VI. CONCLUSIONS

The force resolution of 4 different pattern designs was
compared using deep learning methods. The camera and light
source imaging were used in the integrated system, keeping
others consistent except for pattern design differences. By
comparing the accuracy of deep learning decoupling forces,
it can find that the force resolution of semi-sparse patterns
is better than other pattern designs. Furthermore, using the
grad-cam method, the focus of deep learning models on
different pattern designs was obtained and found that the
focus on semi-sparse pattern design tends to cover the whole
image. Therefore, the design of semi-sparse patterns is more
conducive to deep learning model learning. In this way, the
connection between flexible probe pattern and deep learning
image recognition mechanism is verified, which is conducive
to the design of the flexible sensor. Subsequently, the semi-
sparse pattern was selected as the study object, and its
performance was analyzed. As a result, it found a good
linear relationship between the predicted and actual values
on the force measurement, indicating that the semi-sparse
pattern met the resolution requirements of the deep learning
training force. Finally, we integrated the sensor, making it
small enough to install at the end of the mechanical gripper,
and demonstrated the effectiveness of the proposed sensor
through a series of experiments. For example, the experiment
of adding water to the bottle was designed in terms of force



sensitivity measurement. As a result, the force curve showed
that both the positive pressure and the friction force were
increased during the water-adding process. At the same time,
sensors can also grasp fragile objects through force feedback,
which cannot be achieved by built-in force induction. In the
future, it is hoped to optimize the structure of the sensor
to adapt it to more scenarios, and it can be integrated into
electronic skin to accomplish more challenging tasks, such
as adaptive grasping, human-computer interaction, Etc.
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